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39/41, 1-20135 Milan, Italy 
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Abstract, We consider polynomial-time algorithms for finding approximate solutions to the 
ground-state problem for the foUowing three-dimensional case of an king spin glass: n spins 
are arranged on a two-level grid with .,hi vertical interactions. The main results are: 

(i) there is an approximate polynomial-time algorithm with absolute error less lhan for 
al l  n; and 

(ii) there exists a constant OL > 0 such that every approximate polynomial-time algorithm has 
absolute error greater than (I .,hi infinitely often, unless P = N P .  

1. Introductiou 

Spin glasses represent one of the most challenging problems in solid state and statistical 
physics. The prototype of a spin glass is a dilute magnetic alloy, such as 1% of Mn 01 Fe 
embedded in Cu or Au. 

Many models have been proposed to describe the behaviour of these disordered 
systems. but many important questions still have no satisfactory answers. In particular, 
the determination of ground-state energy values is a difficult task from a theoretical point 
of view and experimental investigations give no precise results. 

The very long relaxation times are the main difficulty encountered both in experimental 
settings and in Monte Carlo simulations. The failure of the relaxation methods suggests the 
use of different algorithms to solve the ground-state problem. 

The first attempt to provide exact ground states by a non-relaxation algorithm was 
performed by Bieche et al (1980) for an Ising spin glass on a planar lattice described by 
the frustration model, where the interactions can have only two symmetrical values, fJ. 
Edmonds’ (1965) algorithm for the minimum perfect matching problem was used to show 
that, for that particular model of a spin glass, the exact ground states could be generated in 
a polynomial amount of computing time. 

Barahona (1982) proved that, under the widely believed conjecture that P # N P ,  for 
a three-dimensional king spin glass with nearest-neighbour interactions chosen randomly 
from (-1, 0, +l), there is no polynomial-time algorithm with which to compute the energy 
of the ground state and the partition function. This result of NP-completeness makes 
it necessary to sacrifice optimality and look for approximation algorithms which run in 
polynomial time. 

* This work has been suppoiied by ’Progetto strategiw algorihmi e modelli neurali’ under CNR grant no 
93.05230.ST74 and under MURST 40 ‘Algoritmi, modelli di calcolo e shulture informative’. 
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In this paper, we restrict our attention to an Ising spin glass on a two-level grid such that 
the number of vertical connections is 6, where n is the number of spins, since Barahona’s 
NP-completeness result is related to this model. 

Our main result is a lower bound on the absolute error for any approximate polynomial- 
time algorithm for the ground-state problem restricted to this three-dimensional model. 

In fact, we prove: 
(i) that there is an approximate polynomial-time algorithm with absolute error less than 

6 for all n; and 
(ii) that there exists a constant ct > 0 such that every approximate polynomial-time 

algorithm has an absolute error greater than a f i  infinitely often, unless P = NP. 
In section 2 we recall some basic elements of complexity theory and in section 3 

we introduce some optimization problems and useful facts in the area of combinatorial 
optimization. In section 4 our main results are stated, section 5 is devoted to the proofs, 
while section 6 summarizes our conclusions and deals with the unresolved problems. 

2. Some basic elements of complexity theory 

In this section, we summarize some of the basic notions of complexity theory which we 
refer to in the present paper. 

Intuitively, a decision problem il can be described as a set of instances Dn and a certain 
property Q; the problem consists in deciding which instances in Dn satisfy Q. 

Denoting the set of words over a finite alphabet I: by C’ and the length of the word 
w by IwI, the elements of Dn are codified as words in C’ so that the size of an instance 
is given by the length of the encoding word. In this way, the problem can be represented 
by a language L 5 E*, where L is the set of words codifying the instances that verify the 
property Q. 

Given this formulation, the solution of a decision problem is equivalent to recognizing 
a suitable language. Devices that recognize languages, e.g. Turing machines, use 
computational resources like space and time; the aim of complexity theory is to classify 
problems with respect to the resources needed to solve them, Two important complexity 
classes are P and NP .  

P is the class of languages which are recognizable in polynomial time by Turing 
machines, i.e. in a number of computation steps bounded by a function polynomial in 
the size of the instance. There is general agreement that a problem can be considered 
‘effectively’ computable if it is in class P. 

N P  is the class of languages L that can be specified as follows (Stockmeyer 1987): 

w E L iff 3y  such that IyI < p(lwl) and R(w,y) 

for some polynomial p and a binary relation R which is computable in polynomial time by 
a Turing machine. That is, N P  is the class of languages L such that w E L if and only if 
there is a short ‘proof‘ y of membership of w in L such that the validity of the proof can 
be ‘easily’ verified. 

Of course, P & NP.  The basic question ‘Is P # NP?’ had already been posed by 
GtMel (1956) in a letter written to Von Neumann (see Hartmanis 1989). Regarding this 
question, observe that even though a given ‘proof can be verified in polynomial time, there 
are exponentially many ‘potential proofs’ to be checked; for this reason, it is intuitively 
believed that the class P is properly contained in the class NP, although until now there 
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has been no proof of the validity of this conjecture; indeed, in this paper, we assume 
P # NP. 

Among the problems in NP,  the so-called NP-complere problem deserve particular 
attention since they are the most difficult from a computational point of view. Roughly 
speaking, a problem Il is called NP-hard if the existence of a polynomial-time algorithm 
for Il would imply P = N P  and it is called NP-complete if it is NP-hard and belongs to 
the class N P  (for a precise definition, see Garey and Johnson (1979)). 

A famous NP-complete problem (and indeed the first which has been proved to be N P- 
complete (Cook 1971)) is the satisfiability problem SAT, which is the problem of deciding 
whether a given Boolean formula in conjunctive form admits a satisfying truth assignment. 
In order to state the problem precisely, let us recall that, given a set of Boolean variables 
X = [XI, x z ,  . . . , x n ) ,  a literal is either a variable xi or its negation E, a clause is a 
disjunction of literals and an assignment is a function that associates 0 or 1 with every 
variable. A clause is said to be satisfied by an assignment if at least one of its literals has 
value 1. Formally: 

SAT. 
Instance. A set X = { x ] ,  x2 ,  . . . , x,)  of Boolean variables and a collection C of clauses 
over X. 
Question. Is there a satisfying assignment which satifies all clauses in C? 

The notion of NP-completeness has been used since the early 1970s (Karp 1972) 
to show the difficulty in finding optimal solutions for a large variety of combinatorial 
optimization problems. The apparent intractability of these problems motivated the search 
for approximate solutions (see, for instance, Garey and Johnson (1979)) and the development 
of an approximability theory for NP-hard optimization problems. 

Important results in this field have recently been obtained on the basis of a new 
characterization of the N P  class (Arora et af 1992) which we recall for the sake of 
completeness. The key concept is the notion of interaction between a verifier and an 
oracle. An oracle is simply a word y E (0, 1)’; a verifier is a polynomial-time algorithm 
M which, during its computation, may ‘call’ the oracle. The verifier-oracle interaction has 
the following protocol: if M enters a particular state (query state), then it reads an integer 
k written in its memory at that computation step; at the next step, M obtains the bit yk in 
position k in the oracle y and it continues the computation. 

An [ r (n ) ,  q(n)]-verifir is a verifier M that, having had a word w input and a random 
string r E (0, 1)’ of length O(r(lw1)). calls an arbitrary oracle y at most O(q(lw1)) times. 
We set MY(w,  r )  = 1 if M, interacting with y, accepts (w. r ) ,  and MY(w,  r )  = 0 otherwise. 

The class PCP[r(n) ,  q ( n ) ]  of languages which are recognized by [r(n), q(n)]-verifiers 
(Arora and Safra 1992) can now be introduced. 

A language L g C’ belongs to PCP[r(n), q(n)] if there exists a [r(n),q(n)]-verifier 
M such that: 

(i) w E L 

(ii) w e L iff the probability {rIMY(w, r) = 1) c for all y. 

iff there is an oracle y such that MY(w, r )  = 1 for all r; and 

Note that, by the previous definitions, the class P coincides with PCP[O,  01 and the class 
N P  with PCP[O,n0(’)]. A surprising characterization of NP is given by the following 
theorem: 

Theorem 2.1. (Arora et a1 1992) 
N P  = PCP[log n ,  I]. 
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3. Approximation problems: preliminary delkitions and results 

For a large class of combinatorial optimization problems, determining an optimal solution 
is extremely time consuming (Garey and Johnson 1979). For this reason, especially when 
dealing with large instances of such problems, one has to be satisfied with approximate 
solutions: trying to classify optimization problems with respect to the complexity of 
computing approximate solutions is, therefore, extremely relevant. 

In this section, some basic definitions and a few recent results conceming the 
approximability of ‘difficult’ combinatorial optimization problems are summarized; for 
notational simplicity, definitions are given only for maximization problems. 

Definition 3.1. A maximization problem ll is defined by the triple (In, Sol, w ) ,  where In 
denotes the set of the instances, Sol is a mapping that, given an instance Z e In, provides 
the set of feasible solutions, and w is the objective function that associates a non-negative 
rational number (solution value) with every couple ( I ,  S), where Z E In and S E Sol(Z). 

It is assumed that there is a ‘natural’ notion of size 111 for every instance Z and size IS1 
for every feasible solution S E Sol(f) and it is required that: 

(i) the size of every feasible solution S E Sol(1) is polynomially bounded in the size of 
the instance Z, i.e. there is a polynomial p such that IS1 < p( lI  I ) ;  

(ii) the predicate S E Sol(Z) can be decided in time polynomial in 111 and ISI; and 
(iii) the objective function w can be computed in polynomial time. 

For any maximization problem, different formulations can be given: a decision version; 
an evaluation version; and a constructive version. Formally: the decision version, given 
an instance Z and a positive rational k ,  decides whether the couple ( I , k )  belongs to 
the set { ( I ,  k)13S : w(Z, S )  > k]; the evaluation version computes the value w’(Z) = 
Maxsrsal(,)(w(l, S ) ) ;  and the constructive version finds an optimal solution S’ that is a 
feasible solution such that w ( l ,  S*) = w * ( f ) .  

We now give the constructive version of two maximization problems useful in this 
context. 

MAX 3SAT. 
Instance. V ,  a set of Boolean variables; C, a collection of clauses over V with at most 
three literals per clause. 
Question. Find an assignment on the Boolean variables that satisfies the greatest number 
of clauses. 

MAX CUT-3. 

Instance. G = (V, E ) ,  a graph of degree D < 3 .  
Question. Find a subset Vi c V such that the cardinality of cut(V1) is maximum, where 
cut(&) is the set of edges with one endpoint in V, and one endpoint in V\Vl. 

It is well known (Garey and Johnson 1979) that, under the conjecture P # NP, if the 
decision version of a maximization problem is NP-complete, there is no hope of finding 
‘efficient’ (i.e. polynomial-time) algorithms to solve either the constructive or the evaluation 
version exactly. Thus, one can try and find, in polynomial time, only ‘good‘ approximate 
solutions; a measure of the quality of an approximate solution is given by the relative error. 
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Definition 3.2. Given a maximization problem l l  = (In, Sol, w ) .  let S E Sol(Z). We call 
relative error the quantity 

EIT(~, S) = ( ~ ‘ ( 1 )  - ~ ( 1 ,  S))/w*(Z) 

where w ’ Q )  = MaxsGsa~(,)(w(l. VI. 
An approximate algorithm for a maximization problem Il = (In, Sol, w )  is an algorithm 

A that, having as an input a problem instance Z, outputs a solution A(Z) E Sol(1). We 
say that A is an approximate algorithm of level E > 0 (equivalently, an &-approximate 
algorithm) if, for every instance I ,  Err(Z, A(1)) < E. The possibility of finding ‘good’ 
approximate solutions for a maximization problem can be formalized by the notion of the 
polynomial-time approximation scheme (WAS). 

Definition 3.3. A maximization problem i7 is solved by a WAS if, for every E 0, there 
exists an algorithm A,, with running time bounded by a polynomial in the size of the 
instance I ,  that outputs a solution A,(Z) such that 

Er(1,  &(I))  < E. 

Various notions of approximation-preserving reductions have been introduced with the 
aim of classifying optimization problems from the point of view of their approximability. We 
recall here the notion of L-reduction introduced by Papadimitriou and Yannakakis (1991). 

Dejinition 3.4. Let nl = (Inl, Soli, w l )  and rI2 = (In?, S o h  w2) be two maximization 
problems. We say that l l l  L-reduces to I I 2  (and write I l l  & nz) if there are two 
polynomial-time computable functions f and g and two constants a. fl  > 0 such that 

(i) with every instance 1 E In,, the function f associates an instance f ( 1 )  E In2 
satisfying w ; ( f ( 1 ) )  < CY w:(1); and 

(ii) with every instance I E In1 and S2 E Solz(f(I)), the function g associates a solution 
g(z. SZ) E SOII(I) such that ENI, g(r ,  SZ)) < f l  k(f ( I ) ,  SZ). 

It is not difficult to prove that if I l l  <L nz and 112 admit a WAS, then nl also admits 

Recently, some important results in NP-hard optimization-problem approximability 
theory have been determined by the application to this field of techniques based on 
interactive protocols (Babai 1985, Goldwasser et a1 1985). Along these lines, on the basis 
of the new characterization of the NP complexity class given in theorem 2.1, it has been 
shown that the MAX 3SAT problem does not admit a WAS unless P = N P  (Arora et al 
1992). From the L-reducibility of MAX 3SAT to MAX CUT-3, proved by Papadimihiou and 
Yannakakis (1991), we can, therefore, conclude: 

Theorem 3.1. There does not exist a WAS for MAX CUT-3, unless P = N P .  

a WAS. 

It can easily be shown that every &‘-approximate polynomial-time algorithm for MAX 
CUT-3 restricted to connected graphs can be transformed into an &*-approximate polynomial 
time for arbitrary graphs. We can, therefore, state theorem 3.1 for connected graphs. 

Theorem 3.2. If P # N P ,  there exists E* > 0 such that for every approximate polynomial- 
time algorithm A for MAX CUT-3 there are infinitely many connected graphs I of degree 
three for which Err(Z, A(I) )  2 E*. 
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4. Results 

Barahona (1982) has shown that, unless P = N P .  there are no polynomial-time algorithms 
which find the absolute minima of the energy function of king spin glasses on a finite three 
dimensional lattice with random nearest-neighbour couplings. In this section, we consider 
a class of king spin glasses studied by Barahona (1982). section 4.2, and estimate upper 
and lower bounds on the absolute error made by approximate polynomial-time algorithms. 

Consider an Ising spin glass on a two-level squared grid (V, E )  such that, if n is the total 
number of nodes, the total number of vertical edges is at most f i  (see figure 1). With each 
node i E 3, there is associated a single variable ai with values in (-1. 1) indicating spin 
orientations, and with each edge [i ,  j )  E 2 there is associated a weight J j j ,  randomly chosen 
in the set [-I. 0. I),  indicating the interactions between nearest-neighbour spins: in this way 
a weighted grid 6 = (3,2, J ) ,  where J : 2 + { - l , O .  l}, is obtained. The energy of a 
spin configuration a = [a,, ..., an] is given by the Hamiltonian H = -&j,Gi Jijaiaj 
and the ground states are those configurations which minimize H. 

Figure 1. A two-level grid with n spins and, at most. J;; vertical inteaetions. 

Let G be the class of the weighted grids 6 = (3, E ,  J )  just described, i.e. (3, I?) is 
a two-level squared grid such that, if n is the total number of nodes, the total number of 
vertical edges is at most f i  and J is a function J : 2 + {-1,O, I}. The ground-state (os) 
problem we are going to consider is formally defined as follows. 

os. 
Instance. A weighted grid e = (9 .2 ,  J )  E 8. 
Question. Determine a spin configuration that minimizes the function H : {-I, 1)" + 75 
defined as H = - & j , e j  Jj,aia,. 

Barahona's result quoted above can now be stated precisely: the decision version of GS 
is NP-complete. 

Our main result is an Q ( f i  lowe: bound on the absolute error made by any 
approximate polynomial-time algorithm; besides, we show, for the class 9, an approximate 
polynomial-ti@ algorithm optimal up to a multiplicative constant. 

Let H'(G) denote the minimum energy value of a spin glass on the weighted grid 6, 
i.e. H ' ( 6 )  = min, H(a) ;  given an approximate polynomial-time algorithm A-for the $is 
problem, we denote the spin configuration, given by the algorithm A on input G, by A(G) 
and the corresponding energy value by H(A(G)). 

We can now state our main results. 
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Fact 4.1. There exists an approximate polynomial-time algorithm A that, for all weighted 
grids 6 = (e ,  %, J )  of the class 8, finds a solution A(&)  which satisfies the following 
relation: 

Iff'(&) - H(A(E))I < fi. 
Fact 4.2. If P # N P ,  there exists a constant LY > 0 such that, for every approximate 
polynomial-time algorithm A, there are infinitely many grids 6 = (0, 2, J )  of the class (i 
for which the following relation holds: 

IH'(6) - H ( A ( 6 ) ) l  2 f i. 
The results about the quality of the solutions given by approximate polynomial-time 

algorithms for the cs problem are given in terms of absolute error. As far as the relative 
error is concerned, we note the following coyiderations: given a two-level squared grid 
(t, b) of the type described above, let 6 = (V, b, J )  be a weighted rundom grid obtained 
by choosing the weights of the edges randomly and independently according to the uniform 
probability distribution on the set ( - l , O ,  I}. By a standard argument, it can be shown that 
Proh(H*(e) < -IPl/S} 2 1 - e-clO1, where c is a positive constant. This observation, 
together with fact 4.2, implies the existence of an approximate polynomial-time algorithm 
that, for 'asymptotically almost all' two-level weighted random grids, finds solutions with 

relative error o(I/,/'& 

5. Proofs 

Pmof of fuct 4.1. Given a two-level weighted grid & E 8, it is easy to verify that the 
associated energy function H can be expressed as 

ff@, 1) = f-4 0 + HZQ) + H3Q, 1) 

where g, y are the spin configurations of the upper and lower levels, respectively, HI@ is 
the energycontribution due to edges between nodes of the upper level, &(y) is the energy 
contribution due to edges between nodes of the lower level and H3&, y7 is the energy 
conhibution due to vertical edges. 

Consider the following algorithm A for the approximate evaluation of the energy 
absolute minima. 

Algorithm A.  

- 

(i) input E = (t, b, J )  
(ii) compute &* = argmin HI 0 
(iii) compute yf = argminH*(y) 
(iv) if H3@',y')  - < 0 then 6 :E I&', - y') else 6 := v, -y*) - 

Since, as shown by Bieche et ai (1980). the Gs problem for planar graphs can be solved 
in polynomial time by Edmonds' (1965) algorithm, problems at points (ii) and (iii) can be 
solved in polynomial time and, therefore, algorithm A works in polynomial time. Moreover, 
observe that: 

(v) output 2. 



IH'(6) - H(A(6)I  < fi. 
We need some observations before proving fact 4.2. 

0 

Observation 5.1. The Gs problem for king spin glasses on two-level weighted grids in the 
class G is strongly connected to the following problem. 

MAX [-1,o, I)-CUT. 
Instance. A weighted grid 6 = (3, %, J )  E G. 
Questio?. Find a subset Cl c p such that the weight W(cut(p1)) is maximum where 
W(cut(v1)) E(i,j)ecut(~,) J i j .  

In fact, let H be the energy function of an king spin glass on the weighted .grid 
& = (e, I?, J )  and let W be the function that assigns the weight to a cut in the weighted 
grid (G, %, - J ) .  It is easy to verify that 

or, equivalently, 

This relation shows that any approximate polynomial-time algorithm for GS with absolute 
error a is an approximate polynomial-time algorithm for MAX (-1, 0, ~J-CUT with absolute 
error a12 and vice versa. 

Observation 5.2. We now consider the problem of embedding a graph of degree D 6 3 
into a two-level grid. We say that a graph (V. E )  is embeddable into a two-level grid 
(9 ,  I?) if there exists a couple of functions (h ,  r )  such that 

(i) h : V -+ fi is an injective function; and 
(ii) r is a function that associates with every edge (i. j )  E E a path Pi, in (fi, e)  

between nodes h( i )  and h ( j )  in such a way that paths associated with different edges have 
no internal nodes in common. 
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In Barahona (1982), section 4.2, a construction is described that allows one to embed 
graphs of degree D 4 3 into two-level grids in polynomial time. For the sake of simplicity, 
one pads the grid obtained by the conshuction presented in Barahona (1982) by a suitable 
number of disconnected nodes so that it is possible to embed, in polynomial time, a graph 
(V, E )  of degree D 6 3 with N nodes into a two-level grid (P, E )  such that 

(i) each level in the grid (P, k) has 3N x 3N nodes exactly; and 
(ii) the number of vertical edges is at most 3 N .  
In the following lemma a reduction of MAX CUT-3 into MAX {-1, 0,  CUT is presented. 

We will denote the objective functions of MAX CUT-3 and MAX {-1,0, l]-CUT by w and 
W ,  respectively, and recall that, given the instances Z l  and Z,  of MAX CUTJ and MAX 
{ - L O ,  ~ICUT,  w * ( h )  = maxsEsol(dw(Zl, S)I and W*UZ) = maxscsol(&+'(Zz, S)l. 

Lemma 5.1. There exists a polynomial-time computable function- j that associates, with 
every instance Z = (V, E )  of MAX CUT-3, the instance f ( Z )  = (V, E ,  J )  of MAX {-1,0,1]- 
CUT such that 

w y z )  = W'( j (Z) ) .  
Moreover, there exists a polynomial-time computable function g that associates, with every 
instance Z = (V, E )  of MAX CUT-3 and with every feasible solution 9 E Sol(f(Z)), a 
solution g(?) E Sol(Z) such that 

W ( j ( Z ) ,  9) < w ( l , g ( b .  
Pmoj o j  lemma 5.1. First, we consider a function j that associates with an instance 
I = (V, E )  Of MAX CUT-3 the instance f ( z )  = ( v ,  d,  J )  Of MAX {-I, 0, l)-CIJT as follows. 

(i) (V, E )  is the two-level grid in which the graph (V, E )  can be embedded by the 
construction defined in observation 2.2. The couple (h ,  r )  realizes the embedding. 

(ii) Let Pij be the path in (V, E )  associated by the map r with the edge [i, j ]  E E ,  
with i c j .  Define the function J : k --f { - I ,  0,1] by assigning, for every [i. j ]  E E ,  
weight + 1  to the edge in Pi, starting from the node h(i)  and by assigning weight -1  to all 
the other edges in Ptj; the remaining edges on each level have weight 0. 

Observe that the weighted grid 2: = (P. k, J )  so obtained belongs to the class g. 
Now, consider the function g that associates with every instance Z = (VL E )  of MAX 

CWJ, and with every feasible solution VI E Sol(f(Z)) ,  the solution VI = g(Z, VI) E Sol(Z), 
where node i E VI if and only if node h(i) E 5. Observe that the functions j and g are 
computable in polynomial time. 

Let % c V be an optimal solution for the instance (V, E )  of the MAX CUT-3 problem; 
by definition, w'(Z) = Icut(V1)l. i.e. cut(V1) is a cut of maximum cardinality in the graph 
(V, E) .  It is easy to see that the set &I c d of edges with weight 1 in all the paths Pij 

with {i. j ]  E cut(V1) is a cut in the grid 8; the weight of the cut k, is exactly Icut(V~)l. 
This proves that w*(Z) < W"( j ( 1 ) ) .  

Now, given an instance Z of MAX CUT-3, let PI be a feasible solution of the instance 
f ( Z )  of MAX 1-1.0, l)-<UT and let VI = g(Z, PI) be the corresponding solution of MAX 
CUT-3. Let Cij = {ele E E A e  is in the path Pij) and Ti,(i+) = ~rGccutt~,)nci, Jfe). 

Observe that if ( i .  j )  E cut(%). then T&I) < +1, else C j ( 9 )  < 0. Thus, we can 
state that, for all feasible solutions .? = E Sol( j(Z)), the following relations hold: 

Finally, since W ( j ( Z ) ,  PI) < w(Z, VI) for all feasible solutions, one can state 
0 W*( j(Z)) < w*(Z), completing the proof. 
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We are now ready to prove fact 4.2 

Proofoffact 4.2. 
construct an approximate polynomial-time algorithm AMC for MAX CUTJ as follows. 

Algorithm AMC. 

Given an approximate polynomial-time algorithm AGS for OS, we can 

(i) Input an instance I of MAX CUT.3, I = G = ( V ,  E )  
(ii) Compute f ( 1 )  = (c, k, J ) ,  where f is the polynomial-time computable function 

(iii) Apply the algorithm AGS to the weighted grid 6 = (P. E ,  - J ) ,  finding the 

(iv) Output gk), where g is the polynomial-time computable function defined in 

defined in lemma 5.1 

approximate solution g 

lemma 5.1. 

From the relation between GS and MAX {-I ,  0, IJ-CUT, described in observation 5.1, 
and from lemma 5.1, it follows that 

$lH*(6) - H(Aos(6))l 2 Iw'(G) - w(AMc(G))I 

where W(6)  and w*(G) are the optimal solutions ot the GS and MAX CUT-3 problems and 
f f ( A ~ s ( 6 ) )  and w(AMc(G)) are the approximate solutions given by the algorithms AGS 
and AMC, respectively. 

Since f and g are computable in polynomial time, we can conclude that algorithm AMC 
runs in polynomial time. 

Since AMC is an approximate polynomial-time algorithm, we know that for infinitely 
many connected graphs G = ( V ,  E ) ,  theorem 3.2 holds 

Iw'(G) - w(AMc(G))I 2 hw'(G) 

Since for a connected graph G = (V, E ) ,  the cardinality of the maximum cut is at least 
IVI - 1 and recalling that [VI = 181V12 (see observation 5.2). we can conclude that for 
infinitely many spin glasses on two-level grids of the type 6 = (c,  E ,  - J )  it holds that: 

6. Conclusion and unresolved problems 

Spin-glass theory is a research area that has many interesting connections with other fields, 
such as neural networks, combinatorial optimization algorithms and parallel architectures 
(see MBzard eta1 (1987)). 

Following Barahona's approach (1982). in this paper we analyse spin-glass models from 
the point of view of computational complexity; our attention is devoted to estimating bounds 
on the error made by approximation algorithms for finding a ground state. In particular, 
under the conjecture P # NP, we present a lower bound on the absolute error made by any 
polynomial-time approximation algorithm for the class of Ising spin glasses on two-level 
grids where, if n is the total number of spins, .& is the number of vertical connections. 



On the approximability of the energy of king spin glasses 6729 

In Barahona (1982), exact polynomial-time algorithms for the same class of models were 
excluded. 

A natural development of this research is to apply the same complexity techniques to 
analyse more general classes of models, in particular: 

(i) two-level grids without restriction on the number of vertical connections; and 
(ii) structures which do not consider only nearest-neighbour interactions. This case is 

related to the symmetric neural networks with sequential updating introduced by HopfieId 
(1982) and it is relevant in the field of combinatorial optimization. 

Finally, we briefly discuss the validity of some of our results in a quantum context. 
These results are based on the assumption that the Turing machine is an adequate model for 
all physically realizable devices, whereas current physical theory asserts that the universe is 
quantum physical. Some years ago, Feynman (1982) indicated that a quantum device might 
potentially be more powerful than a Turing machine: Deutsch (1985) proposed a precise 
model of a quantum computer, that is the quantum Turing machine, and the class BQP of 
languages accepted by polynomial-time quantum Turing machines with error probability at 
most $ was introduced (Bernstein and Vazirani 1993). An open question is to see whether 
our lower bound results hold also in the quantum context, i.e. if they are a consequence of 
the conjecture N P  g BQP. 
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